
White Paper

Security First
Security Features and Best Practices

An infrastructure orchestration platform is central to an enterprise deployment and by definition, it
must have access to data and configurations throughout the network. Therefore the security of the
system itself is of primary concern. It is essential that all components of the orchestration platform
be both designed and deployed securely.

The security concepts of the Orchestral's Composer solution can be organized into four areas:
Server Security
Application Security
Communication Security
Content Security

Each of these layers need to be designed and deployed with security as a central goal for the overall
system.

Introduction

Orchestral.ai, All Rights Reserved @2024 Visit: www.orchestral.ai

Composer can be installed on RedHat/CentOS and Ubuntu Linux systems. Server administrators
should follow enterprise best practices for Linux server hardening to ensure that the underlying
operating systems are adequately secure. For more information on options and recommendations
for secure installations refer to the documentation for RedHat/CentOS and Ubuntu.

Server Security

Orchestral.ai, All Rights Reserved @2024 Visit: www.orchestral.ai

Authentication

Composer includes an authentication service that is re-sponsible for handling user
authentication and generating time-limited access tokens. When authentication is
enabled (the default), those access tokens are used to authenticate against the
Composer REST APIs. The service can be configured with different backends (i.e. PAM,
LDAP, etc.) to handle the authentication. Different backend packages are available from
the Composer repo.

API Keys

Composer also supports API keys. These differ from tokens in that they do not expire.
This makes them suitable for integrations with other applications, e.g. through webhooks.
For security purposes the is only shown at create time. Composer itself does not store
this API Key value in its database, only a one-way hash is stored. It is not possible to
retrieve an API Key after creation. In the event the API key is lost, there is no method
available within Composer to read and access the same key, the only alternative is to
delete the old key and create a new key.

Role Based Access Control

Role Based Access Control (RBAC) allows system administrators to restrict users’ access
and limit the operations they can perform. For instance, a team is granted access to a
limited set of contents such as a set of Composer packs or as granular as a number of
Composer actions that the team can list, view, and/or execute.

A user represents an entity (person/system) which needs to be authenticated and
interacts with Composer through the API. User permissions are represented as a union of
permission grants which are assigned to all the user roles.

A role contains a set of permissions (permission grants) which apply to the resources.
Permission grants are usually grouped together in a role using specific criteria (e.g. by
project, location, team, responsibility, etc.). Permission can be granted at different levels
of the application: platform level, pack level or action level.

By default, when a new Composer user is created, this user has no roles assigned to it,
meaning the user has access to perform any API operation which is behind the RBAC wall.
Roles are assigned to the users. Each user can have multiple roles assigned and each role
can be assigned to multiple users.

Application Security

Orchestral.ai, All Rights Reserved @2024 Visit: www.orchestral.ai

Patch Schedule

Major releases are typically introduced every three to six months. However, any security
vulnerabilities discovered in between releases are considered high priority and will be
addressed in an immediate update.

The industry de facto standard of Responsible Disclosure for handling security issues is
followed. This means the issue will only be disclosed after a fix for the issue has been
developed and released and full credit will be attributed to the person who reported
the issue.

It is recommended that users update as soon as practical whenever a new release is
available.

Default Passwords

There is no default admin username or password for the platform, but those are
required during installation. It is recommended to choose a unique admin username
and strong password prior to or during the installation process.

In addition, when attached services, such as MongoDB, RabbitMQ, Redis, Corosync or
Pacemaker are installed, they have authentication disabled or use a default static
password. It is also essential to update these passwords. Note that if installed with the
installation script, this is done automatically.

Orchestral.ai, All Rights Reserved @2024 Visit: www.orchestral.ai

Composer interacts with the environment through actions and sensors. Sensors are a way to
integrate external systems and events with Composer. Sensors either periodically poll some external
system, or passively wait for inbound events. These sensor events, when matched to conditions in
rules, will trigger action execution in Composer.

Sensors must follow the Composer-defined sensor interface requirements. Actions are pieces of
code that can perform arbitrary automation or remediation tasks in your environment.

Sensors and actions should be configured to interact with the infrastructure elements over
encrypted TLS/SSL sessions. In addition to sensors, webhooks allow you to integrate external
systems with Composer using HTTP webhooks. Unlike sensors which use a “pull” approach,
webhooks use a “push” approach. They push triggers directly to the Composer API using HTTP POST
requests. Webhook POSTs should also be encrypted with TLS/SSL.

Communication Security

Business Operations

Rules Actions

Outbound
integration plugins
that request
changes to external
systems

Sensors

Inbound
integration plugins
that watch for
events from
external systems

Orchestral.ai, All Rights Reserved @2024 Visit: www.orchestral.ai

Contents include Composer packs where actions, work-flows, rules, sensors, and configuration are
defined. Composer has a datastore service where configuration that is used by workflows and
actions can be encrypt-ed. The goal of the datastore service is to allow users to store common
parameters and their values within Composer for reuse in the definition of sensors, actions, and
rules. The datastore service stores the data as a key-value pair.

The key-value store allows users to store encrypted values (secrets). Symmetric encryption using
AES-256 is used to encrypt secrets. The Composer administrator is responsible for generating the
symmetric key used for encryption/decryption. Note that the Composer operator and administrator
(or anyone else who has access to the key) can decrypt the encrypted values.

By default, getting a key tagged as secret (via –encrypt) will always return encrypted values only.

Content Security

Orchestral.ai, All Rights Reserved @2024 Visit: www.orchestral.ai

Orchestral.ai is a team of like-minded technology
professionals possessing a combined experience of over
100 years in the IT industry.

Contact Us: For more information, please contact our
Client Development Team at info@orchestral.ai

Orchestral's mission is to enable IT infrastructure & operations teams
to more effectively manage the complex mission critical processes
that their organizations depend upon for day-to-day operations. We
accomplish this today with the Orchestral Platform - an integrated
suite of automation, orchestration and Explainable Artificial
Intelligence (XAI) technologies designed to empower enterprises to
start their transition toward Autonomous IT Infrastructure.

About Us

Summary
The Orchestral Composer solution is designed to enhance the security of any enterprise in which it is
deployed through a variety of tools and features. The first step of leveraging these advantages is to
deploy the platform itself in a secure fashion. These best practices are a high level roadmap to
secure deployments, and will be built upon as new features and capabilities are introduced.

Services

For MongoDB, RabbitMQ, Redis, Corosync and Pacemaker services, SSL/TLS should be enabled for
encrypted communication. When deployed locally, they should be configured to only listen to the
localhost. If deployed separately, then they should be deployed with internal IP addresses, and
protected with an external firewall that only allows the platform server access to them. The
clustering software necessary for High Availability deployment should communicate on a private
internal network. These services do not need to be directly accessed by users.

